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PSNR delta SSIM  delta LPIPS delta

(higher PSNR is better) (higher SSIM is better) (lower LPIPS is better)
NAFNet [9] 3025 - 0.747 - 0358 -
NAFNet! [9] 3532 +507 0937 +0190  0.089 -0.269
FastDVDNet [12] 27.89  — 0565 - 0502 -
FastDVDNet! [42]3463 +6.75 0914 +0349 0124 - 0.378
TOFlow [49)] 2%.96 - 0673 - 0.251 -
TOFlow! [49] 3408 +811 0903 +0231  0.147 -0.104
BasicVSR++ [6] 31.98 - 0.769 - 0326 -
BasicVSR++T [6] 3434 +235 0873 +0.104 0167 -0.158
VRT [26] 3.99 - 0780 - 0296 -
VRTT [26] 3386 +1.86 0848 +0.064 0192 -0.104

Table 1. #£ CRVD (sRGB) Eifi FiyEMRgER, X T£
/L\)jié‘: AR IR RAMBAIEFTNEGRBA (H T %
RN .

PSNR delta SSIM delta  LPIPS delta

(higher PSNR is better)  (higher SSIM is better) (lower LPIPS is better)
Avg. w/ Lestsy 3595 — 0.9477 - 0.0757 -
first frame <— Ours 36.04 + 0.09  0.9472- 0.0005 0.0763+ 0.0006
middle frame 35.92 -0.03  0.9480+ 0.0003 0.0753- 0.0003
last frame 35.90 -0.06  0.9480+ 0.0003 0.0754- 0.0003
Avg. w/o Lestsy 3586 — 0.9460 00754 —
first frame 35.80 -0.05  0.9454- 0.0005 0.0750- 0.0004
middle frame 36.02 4+ 0.16  0.9473+ 0.0014 0.0753- 0.0001
last frame 35.75 -0.11  0.9451- 0.0008  0.0759+ 0.0005
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ISO 1600 ISO 3200 ISO 6400 ISO 12800 ISO 25600 Overall Speed
PSNR rank PSNR rank PSNR rank PSNR rank PSNR rank PSNR rank FPS rank

(higher PSNR is better) (higher PSNR is better) (higher PSNR is better) (higher PSNR is better) (higher PSNR is better) (higher PSNR is better) (higher FPS is better)
SIDT [7] 38.85 Tthof 10  37.68 Tthof 10  35.82 4thof 10  33.51 4thof 10  29.18 3rdof 10  35.01 4thof 10  6.95 3rdof 10
NAFNetf [9] 39.48 3rdof 10 38.12 5thof 10 35.94 3rdof 10 33.53 3rdof 10 29.55 2ndof 10 35.32 2ndof 10 1.69 Tthof 10
FastDVDNett [42]  39.16 5thof 10  37.92 6thof 10  35.60 5thof 10 32.56 5thof 10 27.93 6thof 10 34.63 5thof 10 5.72  4thof 10
TOFlow' [49] 38.25 8thof 10 36.97 8thof 10  34.90 7thof 10  32.21 6thof 10  28.07 5thof 10 34.08 Tthof 10 2.84 6thof 10
BasicVSRA++T [6] 39.40 4thof 10 38.24 2ndof 10 35.55 6thof 10 31.72 T7thof 10 26.78 9thof 10  34.34 6thof 10 7.41 2ndof 10
VRTT [26] 39.55 2ndof 10 38.12 4thof 10 34.82 8thof 10  30.77 8thof 10  26.01 10thof 10  33.86 8thof 10 0.05 10thof 10
Real-ESRGAN [46] 29.98 10thof 10 28.27 10thof 10 28.04 10thof 10 27.52 10thof 10  27.63 8thof 10 28.29 10thof 10 0.24 8thof 10
UDVD [40] 31.15 9thof 10 30.72 9thof 10 30.23 9thof 10  29.10 9thof 10  27.63 T7thof 10  29.77 9thof 10 0.16  9thof 10
MEF2F [14] 39.09 6thof 10 38.20 3rdof 10  36.36 1Stof 10  33.57 2ndof 10 29.04 4thof 10 35.25 3rdof 10 4.62  5thof 10
Ours - RFCVD 40.35 1stof 10 38.60 15tof 10  36.28 2ndof 10 33.86 1stof 10 3112 1stof 10  36.04 15tof 10  31.66 15tof 10

Table 3. 7E CRVD (sRGB) Bl FROUIIEMRER . TN A IERE R ERE LR iR i, [RIINTE 2 ot ss —
PRIGTTED TV B2 KT SSIM Al LPIPS fRARIISSRIES WAN SR, ATH I i e 295 A5 BRI REHER 25—

Speed

film grain noise w/ AV1 compression spatially correlated noise w/ H.265 compression

PSNR rank SSIM  rank LPIPS rank PSNR rank SSIM  rank LPIPS rank FPS rank
(higher PSNR is better) (higher SSIM is better) (lower LPIPS is better) (higher PSNR is better) (higher SSIM is better) (lower LPIPS is better) (higher FPS is better)

SIDT [7] 27.05 5thof 7 0.664 5thof 7 0.293 4thof 7 28.44 3rdof 7 0.771 4thof 7 0.282 5thof 7 15.00 3rdof 7
NAFNetf [9] 27.16 4thof 7 0.672 4thof 7 0.294 5thof 7 28.40 4thof 7 0.764 6thof 7 0.257 3rdof 7 3.812 6thof 7
FastDVDNet® [42]  27.39 3rdof7  0.686 3rdof7 0272 3rdof7  27.92 6thof 7 0.769 5thof 7 0.296 6thof 7 12.09 4thof 7
TOFlow' [49] 28.15 2ndof 7 0.750 2ndof 7 0.220 1%tof 7 28.39 5thof 7 0.788 3rdof 7 0.258 4thof 7 5.665 bthof 7
BasicVSR++T [6] 26.90 6thof 7 0.651 6thof 7 0.313 6thof 7 27.48 Tthof 7 0.728 Tthof 7 0.358 Tthof 7 15.32 2ndof 7
VRTT [26] 26.55 Tthof 7 0.629 Tthof 7 0.331 Tthof 7 28.78 2ndof 7 0.803 2ndof 7 0.206 15tof 7 0.105 Tthof 7
Ours - RFCVD 28.59 1stof 7 0.774 15%0f 7 0.247 2ndof 7 28.93 1stof 7 0.808 1stof 7 0.239 2ndof 7 69.73 15tof 7
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